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Two factorial-Neumann series expansions are derived for the incomplete Lipschitz-Hankel 
integral Je,(a, z), These expansions are used together with tke Neumann series expansion, 
given by Agrest, in an algorithm which efficiently computes Je,(a, z) to a user defined number 
of significant digits. Other expansions for Je,(a, z), which are found in the literature, are also 
discussed, but these expansions are found to offer no significant computational advantages 
when compared with the expansions used in the algorithm. c 1990 Academic Press, Inc. 

1. INTRODUCTIQN 

The incomplete Lipschitz-Hankel integral (ILHI) is defined in f 1 ] as 

.&,(a, z) := C,: eCart”Z,(t) dt; a, 2, v E @, (1) 

where Z,(t) is one of the cylindrical functions J,,(t), Y,,(t), I,(t), or K,(t). For finite 
values of z, this integral will converge provided !X(2v + 1) > 0. The ~o~res~o~d~~~ 
complete (ordinary) Lipschitz-Hankel integral is an improper integral of the form 

where the conditions %(v + ,D) > 0 and %(a) > 0 guarantee its convergence. 
ILHIs are important special functions since they arise in a number of problems 

in mathematical physics. Agrest and Maksimov [ 1 ] describe a number of these and 
provide reference to a large body of literature on the subject. A typical example 
from acoustics, which involves the functions Je,(a, z) and Ye,(a, z), is the calcula- 
tion of scattering from an absorbing strip [2]. In elec~romag~etics, s appear 
in the Sommerfeld problem [3] (i.e., dipole sources above earth) as as in the 
problem of a printed strip dipole antenna in a layered medium (see [4, 5-j). 

Several papers have been written on the computation of IL 
developed various expansions (see [6-g]) which can be used to compute .ZeJa, z) 
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in different regions of the variables a and z. Earlier, Maximon [9] obtained a 
Neumann series expansion for a class of functions including Je,(a, z) and le,(a, z), 
but no computational procedures were attempted. Also, Amos and Burgmeier [lo] 
give a recurrence algorithm which can be used to compute Je,(a, z) and le,(a, z), 
although no numerical tests were reported. 

In this paper, we develop an algorithm which efficiently computes Je,(a, z) to a 
user defined number of significant digits (SD) for z E % and a E C. We only need to 
handle positive values of z, since 

Je,(a, -z) = -Jeo( --a, z). (3) 

In Section 2, we derive a first-order nonhomogeneous recurrence relation for 
Je,(a, z). Then in Section 3, we use this recurrence relation for y1> 0 to construct 
a factorial-Neumann series expansion for Je,(u, z) which converges rapidly for 
small to moderate values of Iz&&-? 1. In Section 4, the recurrence relation is now 
used for n < - 1 to obtain a second factorial-Neumann series expansion. This time, 
we obtain an asymptotic expansion which can be used to compute Je,(u, z) for 
large values of zlu2 + 1 I. In Section 5, we discuss a Neumann series expansion, and 
some other expansions for Je,(a, z) which are found in the literature. Finally, in 
Section 6, the two factorial-Neumann series expansions are used in conjunction 
with the Neumann series expansion to develop an algorithm which efficiently com- 
putes Je,(u, z) to a user defined number of significant digits (SD). In Section 7, 
Je,(u, z) is computed using both the algorithm which is developed in this paper 
(TJEO), and an adaptive quadrature routine (DOlAKF) from the NAG library 
[ 111, for some typical values of a, z, and SD. A comparison of the accuracy of the 
results and the required CPU time is then made for these two methods. It is found 
that TJEO offers a very fast and accurate way to compute Je,(u, z). 

We will restrict z to be a real number in this paper, however, the analysis which 
is presented in this paper can be modified for z E @. 

2. A RECURRENCE RELATION FOR Je,(u,z) 

The ILHI for the Bessel function of the first kind of integer order is given by 
(see (1)) 

Je,(a, z) := 1: ec”‘t”,l,(t) dt. (4) 

It is convenient to also define a related integral which has variable upper and lower 
limits 

fe,(a, 6, z) := 11 e-“t”JJt) dt. (5) 
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If we apply integration by parts twice to (5)-first using 

u := eCafJn(f), dv := Pdt, (6) 

along with the recurrence relation for the derivative of the Bessel function [IL?., 

u :=e-“’ > du := t”+ ‘J,(t) df, (7) 

along with the indefinite integral [13, (5.52.1 )I-then we obtain the recurrence 
relation. 

where 

Now, choosing 6 so that J,(S) = 0 yields the desired recurrence relation, 

Be,(a, 6, z) + &de,+ l(a, 6,~) =fJzf; n=o, fl: &2,.... 

The solutions of this recurrence relation behave very differently for the two cases 
n 3 0 and n 6 - 1. These two cases are explored in Sections 3 and 4, respectively. 

3. A CONVERGENT FACTORIAL-WEUMANN 
SERIES EXPANSION FOR Je,(a, z) 

If we wish to use the recurrence relation (IO) for n 20, then we must choose 6 
so that f,(S) =O. Due to the behavior of the BesseE function for small argu 
(see [ 12, (9.1.7)] ), this requirement is satisfied by choosing 6 = 0. For this value of 
6, reference to (4) and (5) shows that 

Je,(a, z) = fe,(a, 0, ~1. 

Therefore, the recurrence relation (10) can be rewritten as 

Je,(a, z) + We,, + ,(a, z) =f,(z); n 3 0. 

(11) 

(12) 

Before we can use (12), we need to determine in which direction the recurrence 
will be stable. Therefore, we will use the techniques in [ 141 to perform a stability 
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analysis on (12). The homogeneous solution of (12) is found by using [ 14, (A.24)], 
(9), and [12, (6.1.12)]: 

n-1 

k=O 

n 3 0. (13) 

For large values of n, an approximation for (13) can be obtained by applying 
Stirling’s formula [ 12, (6.1.37)] and [ 12, (4.1.17)]: 

Now, an index of stability for the forward computation of Je,(a, z) from Je,Ja, z) 
is given by (see [14, (2.17)]) 

a(k, n) = 
Jek(% z) .@)(a) & 

Je,(a, z) Jep)(u) =pk’ 
(15) 

where 

/In := 
Je,(u, z) Jey’(u) 

Je,(4 z) 
(16) 

If we assume that an initial value, Je,(u, z), is known, then when recursing from k 
to n, where n > k, the error is increased if pn > Pk and decreased if p,, < pk. There- 
fore, if we can obtain an approximation for pa, then we will be able to use this 
index to determine whether the recurrence relation (12) can be used in the forward 
direction. 

The behavior of pn, for large values of ~1, is obtained by using (13) along with the 
asymptotic behavior of Je,(a, z) which is given in (87) in Appendix A: 

py’- IJe,(a, z)l2,iZ;;TT(n+i)[ ezZ,zr+ l,]n; 

n % K := max(z, /a~/), Z>O,UE@. (17) 

For the limiting case, n --f co, this expression can be simplified by once again apply- 
ing Stirling’s formula. This gives 

z%(a) 
p(l)- lJe,(u, z)I + 4nJ& 2n n 

ezi&?TT 
1”“; n-+co. (18) 

Therefore, we find that forward recurrence using (12) is unstable, since the condi- 
tion (see [14, (2.18)]), 

lim pn = co, 
n-m (19) 

is satisfied. 
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The recurrence relation (12) can also be found in [6, pp. 2071. In that 
authors state that in order to analyze the ILIIIs with integer values of v, if is sua’- 
ficient to study them with v = 0. It may be possible to use (12) in the forward direc- 
tion to calculate a few values of Je,(a, z), but as we have shown in (lg), the 
recurrence will eventually become unstable. The point where the forwar 
becomes unstable is dependent on the parameters a and z. 

We already know that forward recurrence is unstable when ~1% max(z, lazl )7 since 

IQ,, (I) is monotone increasing (see (17)). Now, we need to ihty 
when IZ <z. We will assume that ‘%(a) >O for this analysis, but the case <:o 
can be handled using similar techniques. We start the analysis by s~li~t~~g the 
integral into two pieces, 

Je,(a, z) = Je,(a, co) + $e,(a, co, z); 

The first integral is known in closed form (see [13, (6.623.1)]), an 
tion for the second integral is given in Appendix A (see (102)): 

Jee,ta, z) - 
2”T(n + l/2) 

Ji (a’+ l)n+liz 
-(-l)n~@pJzcos(z+~-~) 

-sin(z+y-:)/; z > 0, %(a) > 0, 4 %-n 3 0, 

where 11 := min(z, zla + jl). An index of stability for using (12) in the forwar 
tion, when 0 < II < z, is given by (15), where an approximation for p,? can 
obtained by substituting (13) and (21) into (16): 

(a) > 0, ?j g II 3 0. 122) 

IJsing the above approximation, we find that forward recurrence will be ~e~ativeIy 
stable when q $ n 3 0. A comparison between py’ and P;‘~ given in (17) and (22), 
respectively, shows that forward recurrence using (12) becomes unstable $o~~w~ere 
in the vicinity of n = IC. 

Since p r’ is monotone increasing as n --f x, it may be possible to calculate 
e(a, z) by using backward recurrence, in the form of a Miller algorith n the 
iller algorithm, the initial condition, 

is chosen to satisfy the asymptotic behavior given in (19). Then (12) is used in the 
backward direction to obtain Je,(a, z) for II = N- 1, N- 2, . ..) 0. For t 
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case where infinite precision arithmetic is used, a relative error bound can be 
obtained by applying (see [ 14, p. 271) 

Je$, z) - Je,(u, z) 
Jeda, z) I I 

Je,(a, z) 1 
= Jejyh’(u) Je,(a, z) 

=-. 
(1)’ N9 K, 

p,,, (24) 

where pg’ is given in (17). Reference to (17) or (18) shows that in the idealized 
case, Miller’s algorithm can be used to compute Je,(a, z) to any desired accuracy 
if N is chosen large enough. 

The actual error can be determined by using (see [ 14, (3.15)]) 

N-l 

N p K, z > 0, %(a) > 0, (25) 

where the previous results, (13), (17), and (22), have been used. The E in (25) is a 
measure of the maximum error introduced due to finite precision arithmetic. Equa- 
tion (25) shows that errors due to finite precision arithmetic become significant, 
and must be included in the analysis, when either s/pf) or E/P!) become large for 
0 d k < K - 1 or K d k <N- 1, respectively. Reference to (22) shows that .s/pp) may 
become large when zla2 + 11 is large. Therefore, one must be careful while using the 
Miller algorithm when this occurs. For small to moderate values of zla* + 11, the 
error accumulation due to finite precision arithmetic can usually be ignored and the 
error bound given in (24) is adequate. Errors due to finite precision arithmetic are 
discussed more thoroughly in [ 15, Section 41. 

When a sequence of solutions is desired (i.e., {Je,(a, z)}; n = 0, 1, 2, . ..). then a 
backward recurrence algorithm should be applied directly to (12); but when only 
one solution is desired, as in our case, the equivalent series representation, 

N-1 fkcz) Jef(u, z) = Jef’(u) c ___ 
k=n Jer)(u)’ 

wheref,(z) and Jef’(u) are defined in (9) and (13) provides some computational 
advantages. This series representation was obtained by applying the initial condi- 
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tion (23) to [14, (.4.25)-(A-27)] (F or more details, see Appen 
Substituting (9) and (13) into (26), yields 

n>o, z>o, aE@. (27) 

Due to the presence of the zk term in (27), this series is not a Neumann series. 
In 1161, Nielsen classifies series which can be written in the form 

a3 
1 w+Jn+Jz) 

n=O 
(28) 

as ~aku~t~te~rei~e; we will use the English terminology factorial-~eurna~~ series. 
Since (27) is of the form (28), we will call it a convergent factorial-Neumann series 
expansion. 

In this paper, we are interested in the special case n = 0. The desired factorial- 
Neumann series expansion for Je,(a, z) is given by 

z(a*+l) k hjk(z)+aJk+l(z)], 1 2 J T(k+3/2) ’ 

z>O, aE@. (29) 

Reference to (18) and (24) shows that this series converges most rapidly for small 
to moderate values of z1,j-j. 

4. AN ASYMPTOTIC FACTORIAL-NEUMANN SERIES 
EXPANSION FOR Je,(a, z) 

Next, let us use the recurrence relation (10) for YE < - 1 to obtain a second 
factorial-Neumann series expansion with different properties. First, we make a 
change of variables, m = - (n + 1 ), in (10). Next, if we define a new integral, 

then (10) can be rewritten as 
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j-:+ ! g  ) 

m  ( ) 

LA4 := (a2y;; Zm CJm+ l(Z) - aJ,(z)]. 

(32) 

Once again, we need to perform a stability analysis before (31) can be used. The 
homogeneous solution for (31) is obtained by applying [14, (A.24)], (13), and (14): 

m-1 
,&;‘(a)= n [-L&p= [Je(,$(a)]-’ 

k=O 

a2+1 )?1 i 1 r(w) = 
2 r(m + l/2) 

1 e(a2+ 1) m. N- 
J[ 1 2m ’ 

m-too. 
2 

(33) 

(34) 

This time, we can use Hankel’s asymptotic expansion [ 12, (9.2.5)] to show that the 
choice 

(35) 

satisfies the requirement that fW(6) = 0 for m 3 0. 
In the same manner as before (see (15) and (16)), we can define an index of 

stability for using (31) in the forward direction: 

where 

(36) 

(37) 

Now, the asymptotic behavior of fi,,,, for large values of m, is obtained by substitut- 
ing (34) and the result from Appendix A (see (96)) into (37): 

“(1) N P, 
1 

ezsJl(a)& la(a2 + 1)” $e,(a, 6, z)l; m+co,z>O,a#O, 

ljeo(O, 6, z)I; m--+oo,z>O,a=O. (38) 

This time, the condition in (19) is satisfied when a ED,, where 

D,:={a:~a2+l~~1na#0}. (39) 

Therefore, forward recurrence using (3 1) is unstable when a E D,. 
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It is also interesting to look at the behavior of 1, for values of m --c z. This 
behavior is obtained for the case %(a) 3 0 by substituting (33) and the result from 
Appendix A (see (100)) into (37): 

jjC2)- m ‘$e,(a, 00, z) 
1 

5 
7ceaz(a2 + 1 )[~(a” + 1)/2]” _I. 

I 2 r(m + 1/2)[a cos(z - mz/2 - n/4) - sin(z - mn/2 - n/4)] 1’ 

z > 0, $X(n) > 0, y := min(z, zja *jl) $ m 3 0. (40) 

Since j,?, (2) becomes larger as m increases when zlu’ + 11 is large, forward recurrence 
will be unstable in the region where (40) holds. 

Since p, *(I) is monotone increasing as m -+ co for a E it may be possible to use 
a Miller algorithm to calculate $e,(a, 6, z) in this re;ibn of the a-plane. In the 
idealized case where infinite precision arithmetic is assumed, the relative error 
bound (see (24)) is given by 

where ,?$&I is given in (38). Therefore, in this idealized case, $e,(a, 6, z) can be 
computed to any number of significant digits by using iller’s algorithm w-he 
a ED,. Once again, it is advantageous to represent $e,(a, 6, z) as a series. 
a ED,, the desired series representation for 2e,(a, 6, z) is obtained by using 
where &(z) is replaced by ~Jz) and JeQ”(a) is replace by jef)(a) (see (32) 
and (33)): 

--n* 

‘e,M(a’ ” *) = (a’ + 1 ,Pr(m + l/2) 
k-m I-(k + l/2) 

Zk 

X [Jk+,(Z)-aJk(Z)l; a>O, aED,. (4,3 1 

The integral of interest, Je,(a, z), is related to je,(a, 6, z) through the identity 

Je,(a, z) = -2e,(a, 6,O) + $eo(a, 6, z), (44) 

where 6 is defined in (35). The first integral, 2e,(a, 6,0), is a special case of the 
integral in [13, (6.611.1)]. If %(a)>0 and af ij, then 

On the other hand, when %(a) < 0, the change of variables T = - t gives 

$e,(a, -co, 0) = JOE e"'J,(z) = ~ 
j-T-. 
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The square roots in (45) and (46) are defined as 

%(Ju2+ l)>O. (47) 

A convergent factorial-Neumann series expansion is now obtained by combining 
the results in (43t(47): 

xr k+; CJk+I(Z)-QJk(Z)l; 
( 1 

z>o, lu2+ 112 1, a#O, (48) 

where the proper branch cut for the square root is given by 

%(pTi) > 0; S(a) 30, 
%(JiTl) < 0; %(a) < 0. 

(49) 

This branch cut is shown pictorially in Fig. 1. 
When Ia2 + 11 3 1, but is not too large, the series expansion (48) will not yield 

an accurate approximation for Je,(a, z) until M$ z. Therefore, for large values of 
z, a large number of terms may be required. Some insight into the behavior of this 
series is obtained by looking at the special case Ia2 + 11 = 1, where a # 0. If z is 
large, then the magnitude of the lirst few terms in the series will decrease rapidly 
due to the inverse powers in z. At some point, the behavior of the gamma function 
in the numerator will become dominant, and the terms will start to increase in 
magnitude. When k becomes much larger than z, the behavior of the Bessel func- 
tions dominates, and once again the terms will decrease in magnitude. Now, if 
zja* + 1 I is large, what if we truncate the series when the magnitude of the terms 

a - plane 

FIG. 1. Branch cut for the convergent series expansions 
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reaches the first local minimum? This question can be answered by looking at the 
relative error bound (41) for A4 < q = min(z, zla i j] ). 

where /?g’ is given in (40). Reference to (40) an (50) shows that for large values 
of zla2 + 11 it may be possible to obtain an accurate approximation for $e,(a, CC 
by using the first few terms in (43). Therefore, the factorial-~e~rna~~ series ( 
can be used as an asymptotic series for large values of zla2 + I/) provided that z 
and %(a) 3 0. 

In Appendix A, we found that $e,,,(a, co, z) can be approximated by (1 
large values of q when ‘%(a) 3 0. We obtained this a~~rox~mat~on by replac 

essel function in $e,(a, co, z) with its asymptotic expansion for large 
en we integrated the result. When z is a large positive number and 
ssel function in $e,(a, - co, z) cannot be replaced by its asymptotic expan- 

sion, since the integration variable now ranges between z and -co. If we rewrite 
2e,(a, - 03, zf as 

where z<zoY then we can use (100) to show that 

where C,(a) is a function that is independent of z. 
Using (33), (37), and (52) we find that 

ic’- IPda, -x, z)l /Ii r(m + l/2) C,(a) 

r(w) 

_ 
l 

2 .e=r(m + 1/2)[ a cos(z - nm/2 -n/4) - sin(z - rm/2 - n/4)] 
Z n(a2+ 1)z” 1 

z>o, %(a),<O,y~mmo. 

If we try to use (43) as an asymptotic expansion for 2e,(a, - a, z) when 
then the relative error (see (50)) will be given by l/b:‘, where fiF is give 
Reference to (53) shows that because of the function C,(a), large values of z/a2 + 
will not necessarily guarantee a small relative error. Ther e, (43) may not 
used as an asymptotic expansion for je,(a, - 30,~) when ) < 0 and q is large. 

581/87/Z-5 
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S(a) a - plane 
I 

F< t1 

- R(a) 

FIG. 2. Branch cut for the asymptotic series expansion. 

However, (43) is an asymptotic expansion for some function; therefore, if we let 
(see (43)) 

Je,“(u, z) - G(a) 

e --uz M-l 

- w2)(~* + 1) k=O 
c [z(u:+ l)jy+;) [IJk+l(z)-aJk(z)l, (54) 

then all we need to do is find the function G(a). The integral, &(a, z), is 
continuous across the boundary %(a) = 0, therefore the asymptotic expansion for 
Je,(a, z) must also be continuous at this boundary. We previously found that (48) 
can be used as an asymptotic expansion for large zja2 + 11 when z > 0 and ‘%(a) > 0. 
Therefore, the function G(u) can be determined by equating (48) with (54) at the 
boundary %(a) = 0. Doing this, we find that 

G(a) = l/J=, (55) 

where the branch cut for the square root must be defined as in Fig. 2. The branch 
cut is defined analytically by 

%(J&T) < 0; u~{~(u)<0)n{l~(u)l>l), 

%(Jzrl) 3 0; otherwise. 
(56) 

Finally, the desired asymptotic factorial-Neumann series expansion for Je,(a, Z) 

is given by 

Jef(u2z)=J& + r&a:+ 1) k=O Y [ z(L+ l)]*++;) 

x [J/c+ I(Z) - aJ!&)l; z>0,z~u*+l~+GO,aE@, (57) 

where the proper branch cut for the square root is defined in (56). This branch cut 
was verified numerically (see Table I). 
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TABLE I 

Typical Results for a Given Set of Inputs 

5 

Inputs 

a SD Use 

Use forward (F) CPU No. of 
or backward (B) time correct 

recurrence (ms) digits 

25.0 0.0 + j 0.0 

29.0 0.2 + j 1.0 

35.0 O.O+j0.72 

40.0 -0.001 + j0.6 

40.0 -0.001 +j 1.4 

52.0 -0.25 + j 1.0 

100.0 Q.O- j0.9 

4 (57) 
8 (29) 
8 DO!AKF 

12 (58) 

4 (57) 
8 (29) 
8 DOlAKF 

12 (29) 

4 (29) 
8 (29) 
8 DOlAKF 

12 (29) 

4 (57) 
8 (29) 
8 DOlAKF 

12 (58) 

4 (57) 
8 (57) 
8 DOlAKF 

12 (58) 

4 (57) 
8 (29) 
8 DOlAKF 

12 (58) 

4 (57) 
8 (29) 
8 DOlAKF 

12 (29) 

F 
B 

B 

F 
F 

B 

F 
B 

B 

F 
B 

B 

F 
F 

B 

F 
F 

B 

F 
F 

F 

4.67 5 
16.7 I! 
96.0 14 
16.70 13 

4.00 6 
15.30 10 

104.0 14 
14.6 13 

16.7 
14.7 

102.0 
18.0 

5.33 
20.0 

106.0 
23.3 

5.33 
10.7 

320.0 
12.7 

4.00 
28.0 

320.0 
15.3 

6.00 
20.7 

732.0 
24.7 

5 
10 
13 
13 

5 
11 
14 
!4 

6 
9 

14 
14 

4 
IQ 
13 
13 

5 
10 
14 
13 

It is interesting to compare the asymptotic expansion in (57) witkn the cQ~ve~~~~t 
series expansion (48). We find that the first term is not the same when (a)<0 aXI 
13(a)/ < 1. In fact, referring to (49) and (56) shows that they ffer by a minus sign. 
This behavior is similar to the Stokes’ phenomenon which 
representations of special functions (see [17, Section 3.51). T 
connection with the intrinsic cut appearing in partial fraction representatives, 
which is discussed in [18]. 
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5. OTHER EXPANSIONS FOR Je,(a,z) 

In this section, we look at some of the other expansions for Je,(a, z) that are 
given in the literature. A very useful Neumann series expansion is given by Agrest 
[7, (3.3) and (3.5)], 

Je,(u, z) = 

z>O,ueC,a# -kj, (58) 

where the branch cut for the square root is defined analytically in (49) and shown 
pictorially in Fig. 1, and sk is defined as 

1; &k := 
k = 0, 

2; k = 1, 2, 3 ,... . (59) 

This Neumann series expansion has good convergence properties for small to 
moderate values of z or large values of Idm + al. Therefore, it will be used in 
conjunction with the two factorial-Neumann series expansions, which were derived 
in Sections 3 and 4, in an algorithm for the computation of Je,(a, z). 

A Neumann series expansion for Je,(u, z) can also be found in an earlier paper 
by Maximon (see [9, (31’)]). By using the generating series [12, (9.1.41)] and 
some algebra, it can be shown that Maximon’s expansion is equivalent to (58). 

Other expansions, given in the literature, did not provide any significant com- 
putational advantages when they were compared with (29), (57), and (58); there- 
fore, they were not included in the algorithm for the computation of Je,(u, z). 
However, some of these expansions will be briefly discussed below. 

First, we will look at a convergent series expansion for Je,(u, z) that is given in 
the paper by Agrest and Rikenglaz [6, (6)]. This expansion is obtained by replac- 
ing the Bessel function in the integrand of Je,(u, z) by the power series expansion 
[12, (9.1.12)], and then integrating term-by-term. This procedure yields an expan- 
sion in terms of incomplete gamma functions, y(n + 1, uz), which can be expressed 
in the form 

O” (-l)k 
Jedu, ‘I= k;. (k! 1’ 4k g,kt”, z)> (60) 

where 

gn(4 z) := Yb + 1, az) 
u”+l ;!220. (61) 
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Incomplete gamma functions satisfy the recurrence relation [12, (6.5.22)], there- 
fore g,(a, z) will satisfy 

gn(Q, z) - 
ugn+I(a,z)=z”+‘e-az~ 

n-t1 n+% ’ 
n 3 0. 

Once again, the stability analysis presented in [14] can be applied to tkis 
recurrence relation. It shows that forward recurrence using (62) is unstable (see 
115, Section 41 for more details). On the other hand, it can be s 
sequence of functions, { g,(a, z) >, can be computed using 2 back 
algorithm. In [15, Section 41, the series expansion (60) is compare 
sions in (29) and (58). When Ia’+ 11 < 1, it was found that (29) converges with 
fewer terms than (60). It was also found that round-off error is more of a problem 
when using (60) than when using (29) whenever z is large and Ia* + 11~ 1. When 
la* + l/ > 1, it can also be shown that (58) is better suited for computing J&a, Z) 
than (60). e thus conclude that (60) does not offer any significant ~om~utatio~a~ 
advantages when compared with (29) and (58). 

The paper by Agrest and Rikenglaz (see [6, (4) and (5)]) also contains two 
asymptotic expansions for Je,(a, 2) for large zja’ + 11. Since Jede,(a, Z) must have a 
unique asymptotic expansion as zlu2 + 1/ -+ co, the asymptotic expansions in 
must be equivalent to (57). We found that the asymptotic factorial-~eurna~~ series 
expansion (57) is better suited for computational purposes than either of the 
asymptotic expansions in [6]. 

Hn the paper (see [lo, (3.2)]), Amos and Burgmeier give a second-order non- 
homogeneous recurrence relation which can be used to obtain Je,(a, z)~ For the 
special case that we are interested in, this recurrence relation is equivalent to the 
recurrence relation that is given by Agrest in [7]. In that paper, Agrest shows that 
using this second-order recurrence relation is equivalent to summing the ~e~rna~~ 
series (58 ). 

6. AN ALGORITHM FOR COMPUTING Je,(a, Z) 

In this section, we outline an algorithm which efficiently computes JeJa, Z) to a 
number of significant digits (SD). We will use the three series expan- 

(57), and (58), to compute the ILHI, &,(a, z), for z>O and age. For 
z < 0, we apply the identity (3). 

As we have previously shown, these three expansions have very different proper- 
ties. Therefore, we must determine which expansion to use for a given set of inputs, 
a, Z, and SD. In all three of these expansions, e need to compute 2 sequence of 

essel functions {J,(z)}. We use one of two ifferent methods to compute the 
essel functions depending on the values of t inputs, a3 z, and SD. In both oi 
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these methods, we will make use of the following 
[12, (9.1.27)]): 

recurrence relation (see 

(63) 

It is a well-known fact that Jk(z) is the minimal solution of this recurrence relation, 
and Y,(z) is the dominant solution (see [14, 191). Therefore, care must be taken 
when using (63) to obtain the sequence of Bessel functions. 

The first method, which is the most efficient of the two methods and will be used 
whenever possible, involves the use of (63) in the forward direction. Since Jk(z) is 
the minimal solution of the recurrence relation, forward recurrence will become 
unstable at some point. For values of k < z, Jk(z) and Y,(z) both behave like 
damped trigonometric functions of z, but when k > z, these two functions behave 
very differently (see [12, (9.3.1)]): 

1 ez ” 
JJz)-- - . 

4-c ) 2zv 2v ’ 
v+co, 

Y,(z)- - $ ; -“; 
J( ) 

V-+CQ. 

(64) 

(65) 

Using the above equations, it can be shown that forward recurrence will become 
unstable when k becomes larger than z (see [14, 191). Actually, it may be possible 
to compute a few Bessel functions of order greater than z, but the accuracy will 
start falling off rapidly with increasing values of k. Since we can only use forward 
recurrence to obtain (J,(z)} for k Gz, this method will only be useful when z is 
large. When this is the case, we can use Hankel’s asymptotic expansion to compute 
the two starting functions, Jo(z) and J1(z), and then we can use (63) in the forward 
direction to compute (Jk(z)} for kdz. We determined using numerical tests that 
Hankel’s asymptotic expansion can be used to approximate the starting functions 
to SD significant digits if 

z>SD+4. (66) 

When we cannot use forward recurrence to compute the sequence of Bessel func- 
tions, then we must resort to a backward recurrence algorithm. We will make use 
of a backward recurrence algorithm which is based upon a combination of the algo- 
rithms due to J. C. P. Miller and F. W. J. Olver (see [20]). We chose this algorithm 
because it automatically computes the sequence of Bessel functions to a user defined 
number of significant digits. Background information on the Miller and Olver 
algorithms can be found in [14, 19,211. 

In order to compute Je,(a, z) to SD significant digits using (29) or (58), we need 
accurate approximations for all the Bessel functions, Jk(z), that are larger in 
magnitude than the test value, T, where 

T := ; x lo-““IJo(z (67) 
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The test value, T, can be approximated by 

The algorithm in [20] provides a very efficient method for accomplishing this. 
First, a sequence pM, pM+ 1, . . . is computed by using (63 ) in the forward direction 

starting with pM = 0 and p M+ 1 = 1, where A4 := int(z) (M is the largest integer less 
than or equal to z). The sequence of pm’s will be nondecreasing in absolute value 
since the dominant solution to the recurrence relation, Y,(z), is nonde~reasi~~ for 
m > M. Forward recurrence continues until the error condition, 

is satisfied (see [21, (4.12)]), where T is given in (68). 
Once the error condition in (69) is satisfied, backward recurrence on (63) begin- 

ning with Z, = 0 and Z,_ 1 = l/p,, gives the sequence Z,, Z,-, , . . . . Z,. Now, the 
desired solutions, Jk(z), are determined by applying tbe ~ormal~~atio~ condition 
[12, (9.1.46)]: 

The next step is to determine which expansion to use to compute Je,(a, z) for a 
given set of inputs, a, z, and SD. For large values of z and z/a* + 11, we wou 
to use the asymptotic factorial-Neumann series expansion (57). Since z is lar 
will use forward recurrence to compute the sequence of Bessel functions. Therefore, 
we must truncate the series at some k, where k <z. This means that the 
functions in (57) will have sinusoidal behavior. Reference to (57) shows that we wih 
obtain the best approximation for Je,(a, z) when the factor, 

reaches the first minimum. Using the results which are derived in Appen 
(106)), we find that (71) reaches a minimum when 

k=k,,,:= 
zla’+l/-1 

2 . (721 

If k,,, > z, then the accuracy is limited by the rmmber of computed essel 
functions. For this case, we will set 

k Inax = z. (73) 
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We can use the series expansion (57) to obtain an approximation for Je,,(a, z) 
that is accurate to SD significant digits if the kth term, where k = k,,, , is small 
enough. Therefore, the following inequality must hold: 

For large values of q = min(z, zJa k jl), we can obtain an approximation for (74) by 
using [12, (9.2.1) and (6.1.37)]: 

When z > k,,, , (75) can be further simplified by substituting (72) into (75): 

ix 10-SDle”‘Je,(a, z)l > 
2 

/a*+ 116 
eCz(‘a2+ ‘I’*) max( 1, la/). (76) 

An approximation for leuZJeO(u, z)l can be obtained by using the previous 
result (21): 

min(z, zlu *jl) ti 0. (77) 

Reference to (75)-(77) shows that the asymptotic factorial-Neumann series expan- 
sion (57) is most useful when zlu2 + 1 I is large. We use this expansion to compute 
Je,(u, z) when (75) holds and z > SD + 4. 

When z > SD -I- 4, but (75) is not satisfied, we still prefer to use forward 
recurrence to compute the sequence of Bessel functions, but now we would like to 
use the convergent factorial-Neumann series expansion (29) to compute Je,(u, z). 
Once again, we must first determine whether this expansion will provide the desired 
accuracy. Since we are using forward recurrence to obtain {J,(z)}, the series (29) 
must be truncated at some k < kint : = int(z). Therefore, we can use the series expan- 
sion (29) provided that 

Once again, we approximate (78) by applying [12, (9.2.1) and (6.1.37)]: 

ix 10PSDle”‘Je,(u, z)l > ~(2k~+3)[~~~~~~l*1..max(l, Ial). (79) 
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hen z/a* + 1/ > 2, we can use the approximation for leazJeg(a, z)i which is given 
in (77). On the other hand, when zla2 + 11 < 2, we can obtain an a 
approximation for leazJeO(a, z)I by keeping the first term in (29) yielding 

-$,cos(z-~)+acos(z-~)~; zla*+1j<24 (80) 

where the asymptotic expansion [12, (9.2.1)lj has been applied. We use forward 
recurrence to compute the Bessel functions and then use the convergent factorial- 
Neumann series factorial- 
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where we have dropped the first term on the right-hand side of (81). This inequality 
gives us an estimate for the maximum tolerable error, E, that can exist if (29) is to 
be used when z/a2 + 11 is large and 1 a2 + 11 < 1. We can define 

la2+ 1) &A z[W(a)- Id+ 11/2] 

SDN := SD -log,, 
max(l, Ial) 

(83) 

where SDN is the number of significant digits required in all operations. If the 
accuracy of the computer is less than SDN, then (29) cannot be used to compute 
&,,(a, z). If (29) can be used, then in order to obtain SD significant digits in 
Je,(a, z), we must use SDN instead of SD when we calculate the sequence of Bessel 
functions (see (68)). 

Finally, if the parameters a, z, and SD are such that none of the previously men- 
tioned methods can be used, then we will use backward recurrence to compute the 

J%(% 2) JQ(% 2) 

by (58) by (57) 

FIG. 3. Flow chart for the computation of Je,(a, z). 
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sequence of Bessel functions, and the Neumann series expansion (58) will be use 
to calculate 9e,(a, z). 

An algorithm which is structured as outlined in this section (s ow chart 
in Fig. 3) can be used to determine which expansion to use to c Jd4 2)~ 
We will name this algorithm TJEO. A listing of the Fortran source code for TJEO 
is given in Appendix F of [ 151. 

TABLE II 

Typical Results for a Given Set of Inputs 

z 

Inputs 

a SD Use 

Use forward (F ) 

recurrence 

6.01 0.1 +j 5.0 

1.0 o.o+j 1.0 

1.0 ~ 20.0 + j 20.0 

1.0 20.0 + j 1000.0 

10.0 -l.O+ j20.0 

100.0 0.1 + j 5.0 

1000.0 -0.01 + j 1.0 

4 
8 
8 

12 

4 
8 
8 

12 

4 
8 
8 

12 

4 
8 
8 

12 

4 
8 
8 

12 

4 
8 
8 

12 

4 
8 
8 

12 

(29) B 

(29) B 
DOlAKF 

(29) B 

(29) B 

(29) B 
DOlAKF 

(29) B 

(58) B 

(58) B 
DOlAKF 

(58) B 

(58) B 

(58) 
DOlAKF 

(58) B 

(57) F 

(58) B 
DOlAKF 

(58) % 

(57) F 

(57) F 
DOlAKF 

(57) F 

(29) F 

(29) F 
DOlAKF 

(29) F 

CPU 

time 

(ms) 

2.OQ 
3.33 

98.0 
3.33 

2.67 
3.33 
94.0 

3.33 

2.61 
4.00 

98.0 
4.67 

0.667 
0.667 

3048.0 
3.33 

4.00 
5.33 

708.0 
5.33 

4.00 
4.00 

1976.0 
5.33 

20.0 
24.0 

7000.0 
26.7 

- 

No. of 
correct 
digits 

10 
14 
14 
14 

4 
11 
i4 
14 

6 
12 
14 
14 

8 
8 

14 
i3 

6 
Ei 
13 
13 

14 
14 
14 
!4 

6 
10 
I3 
12 
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7. RESULTS 

In this section, we use TJEO to compute Je,(a, z) for some typical values of a, z, 
and SD. For comparison purposes, we also use an adaptive quadrature routine 
(DOlAKF) from the NAG library [ll]. DOlAFK was chosen because it is well 
suited for oscillating, non-singular integrands. The relative error bound, 

EPSREL = ; x 10psD, (84) 

will be used with this routine. The Bessel function in the integrand of Je,(a, z) is 
computed using another NAG routine (S17AEF). The tests were carried out on a 
Hewlett Packard 9000 series 300 workstation. 

Table I and Table II contain the results for some typical values of the inputs, 
a, z, and SD. In the fourth column, we indicate which method was used to compute 
Je,(a, z). When the quadrature routine was used, DOlAKF is listed. On the other 
hand, when TJEO is used, the algorithm automatically chooses which of the expan- 
sions, (29), (57), or (58), to use. Therefore, the expansion which was chosen for a 
given set of inputs is listed in the fourth column. The algorithm TJEO also chooses 
whether to use forward or backward recurrence to compute the sequence of Bessel 
functions. This is listed in the fifth column. These two columns are included in the 
table to demonstrate how TJEO automatically picks which method to use for a 
given set of inputs. Even though the method that is chosen is not guaranteed to be 
the most efficient method, it usually is. 

The sixth column sho,ws the amount of CPU time which was required to com- 
pute Je,(a, z) for a given set of inputs. This column shows that TJEO offers a very 
efficient way to compute Je,(a, z) when compared with DOlAKF. It also shows 
how efficient the different series expansions are for a given set of inputs. 

The last column contains the number of correct digits in the final result. While 
neither routine will guarantee the requested number of significant digits, this 
column demonstrates that the request is usually satisfied. 

In conclusion, we find that TJEO offers a very accurate and eflicient way to com- 
pute Je,(a, z) for a given set of inputs, a, z, and SD. The algorithm accomplishes 
this by choosing between the three series expansions, (29), (57), or (58), where the 
required sequence of Bessel functions is computed using either forward or backward 
recurrence. 

In [4, 51, the inner angular integral of a two-dimensional Sommerfeld integral 
was written in terms of a finite number of ILHIs, Je,(a, z). In these papers, it was 
found that a modified version of TJEO provides an efficient way to compute the 
required ILHIs. 

APPENDIX A: ASYMPTOTIC APPROXIMATIONS 
FOR SOME INTEGRALS 

In this appendix, we derive asymptotic approximations for the integrals we 
encounter while performing the error analysis in Sections 3 and 4. 
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Pn.1. Asymptotic Behavior of Je,(a, z) for Large n 

The function of interest is given in (4). If ~19 2, then an asymptotic expansion for 
this integral can be obtained by replacing the Bessel function by its asymptotic 
expansion ( 64 ) 

The integral on the right-hand side of (85) is an incomplete gamma function (see 
[12, (6.5.2) and (6.5.4)]) which can be expanded in terms of a series 
[12, (6.5.29)]: 

Now, the desired asymptotic behavior is obtained by only keeping the first term in 
this series: 

zepui z2e n I 
Je,,(a,z)-- - ---. 

A ) 2nj.j 2n 2nfl’ 

n$fc:=int(max(z, laz~)),z>O,aEC. 

A.2 Asymptotic Behavior of je,,,(a, 6, z) for Large m 

We are interested in finding the asymptotic behavior of (W), where 6 is 
in (35). This integral is first divided into two pieces, 

de,(a, 6, z) = je,,(a, 40) + je,(a, 0, z): 

and then the asymptotic behavior of each piece is obtained separately. The results 
are then added together to obtain the asymptotic behavior of the original 
integral (30). 

The asymptotic behavior of $e,(a, 0, z) is obtained by replacing the Bessel 
function with its asymptotic expansion (64): 

The other integral, $e,(a, 6,0), will exhibit a different asymptotic be 
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the two cases of 6 given in (35). When %(a) 30 and a #O, $e,(a, co, 0) can be 
expressed as a hypergeometric function by using [ 13, (6.621.1)]: 

Gkn(a, a, 0) = 
-1 

a2”T(m + 1) 
F 

The asymptotic behavior is now obtained by only keeping the first term in the 
series expansion for the hypergeometric function [ 12, (15.1.1)]: 

$e,(a, 9 0) - 
-1 1 

a2”r(m + 1)’ m+-fl, %(a)30, a#O. 

On the other hand, when a = 0, the integral is known in closed form (see 
[13, (6.561.14)]): 

$40, 9 0) = -r(w) 
2”r(m + l/2)’ (92) 

Now, the asymptotic behavior of $e,(a, co, 0) can be expressed in a form similar 
to (89) by applying Stirling’s formula and [12, (4.1.17)]: 

: 
yy& (ii$ m+co,a#O,%(a)~O, 

$e,(a, m,O) - -1 e m (93) 
- -- 

J( ) 2 2m ’ 
m-+co,a=O. 

The asymptotic behavior of je,(a, -co, 0) for the case %(a)<0 is obtained by 
making the changes of variables, z = - t and b = -a, in (30). This yields 

$e,(a, - a,01 = -$e,Jb, oo,O), (94) 

where [12, (9.1.35)] was applied to the Bessel function. Now, the previous result 
(93) can be applied, since 93(b) > 0: 

$e,(a, - a,01 ’ --(‘)“=*(t)m; m-+q %(a)<O. (95) 
b& 2m 

Finally, the asymptotic behavior of $e,(a, 6, z) is obtained by combining the 
results given in (88), (89), (93), and (95): 

m+co,z>O,a#O, 

m-t w,z>O, a=O. 
(96) 
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A.3. Asymptotic Behavior of $e,(a, CD, z) for Large z 

We are interested in finding the asymptotic behavior of (30) for large values of 
z when %(a) 3 0. When z $ yy1, the Bessel function in (30) can be replaced by its 
principle asymptotic form [ 12, (9.2.1)]: 

The analysis is simplified by initially assuming that a is a real variable and then 
later extending the results to complex values of a by using analytic continuation. 
This assumption allows us to rewrite (97) as 

Making the change of variables, z = tfa If: j), IIQW enables us to put this integral into 
the form of an incomplete gamma function (see [12, (6.5.3)]): 

je,(a, 9 z)- - eiiWm+1)/4) (a+j)mp1/2 r ; 

The desired asymptotic expansion is obtained by 
function by the first term of [12, (6.5.32)]: 

replacing the incomplete gamma 

2 epaz 
2e,(a, c0, z)- - - d- 71(a2+1)zM+“/2 

.[acos(z-y-:I-sin(z-7-z) 

z > 0, a 2 0, q := min(z, zla *j\ ) 9 m 3 0. 

Now, by using analytic continuation, (100) can be extended to hold for z > 0, 
93(u) 2 0, where a # +j. 

With the added restriction, %(a) # 0, $e,(a, CYZ, z) will be defined for all positive 
and negative values of m. Using Eq. (5), (30), and [12, (9.1.5)], we find that 

fe,(a, ~0, z)= C-1)” $e-,(a, cc, z); (BOl) 
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Therefore, the asymptotic expansion for de,(a, co, z) is found using the results 
in (100): 

$e,(a, co,Z)N(-l)H+l ~e,:;:l;‘[ucos(z+~-~) 

-sin(z+y-f)]; z>o, %(a)>O,~~nno. 

APPENDIX B: FINDING THE LOCAL MINIMUM OF P, 

In this appendix, we determine what value of I minimizes P,, where 

2 I 
P,:= ~ 

( ) zla2+ 11 
r(l); I>O. 

(102) 

(103) 

The gamma function in (103) can be approximated by the first term in Stirling’s 
formula for moderate to large values of I: 

(104) 

Now, the value of I which minimizes P, can be found by differentiating (104) and 
setting the result to zero: 

Solving this equation for 1 yields 

l= 
zlu2+ 11 e”2’ zlu2+ 11 

2 =:2; 
I$>. (106) 

REFERENCES 

1. M. M. AGREST AND M. Z. MAKSIMOV, Theory of Incomplete Cylindrical Functions and Their Applica- 
tions (Springer-Verlag, Berlin, 1971). 

2. P. M. MORSE AND K. U. INGARD, Theoretical Acoustics (Princeton University Press, Princeton, NJ, 
1986), pp. 458. 

3. E. F. KUESTER AND D. C. CHANG, Scientific Report No. 43, Electromagnetics Laboratory, Depart- 
ment of Electrical Engineering, University of Colorado, Boulder, Colorado 80309, 1979. 
(unpublished) 

4. S. L. DVORAK AND E. F. KUESTER, “Fast Numerical Computation of Two-Dimensional Sommerfeld 
Integrals Using Incomplete Lipschitz-Hankel Integrals,” National Radio Science Meeting, URSI 
Abstracts, Boulder, Colorado, January 1987, p. 72. 



COMPUTATION OF Je,ja, Z) 327 

5. S. L. DVORAK AND E. F. KUESTER, Scientific Report No. 94, Electromagnetics Laboratory, Depart- 
ment of Electrical Engineering, University of Colorado. Boulder, Colorado 80309: i 989. 
(unpublished) 

6. M. M. AGREST AND M. M. RIKENGLAZ, Zh. Vychisl. Mat. Mat. Fiz. 7, I370 (1967) [Russian]; USSR 
Comput. Math. Math. Phys. I, No. 6, 206 (1967). 

I. M. M. AGREST, Zh. Vychisl. Mat. Mat. Fiz. 11, 1127 (1971) [Russian]; USSR Cornput. Math. Ma?h. 
Phys. 11, No. 5, 40 (1971). 

8. M. M. AGREST, Zh. Vq’chisl. Mat. Mat. Fiz 18; 10 (1978) [Russian]; USSR Comput. Math. Math. 
Phys. 18; No. 1, 8 (1978). 

9. L. C. MAXIMON, Proc. Amer. Math. Sot. 7, 1054 (1956). 
10. D. E. AMOS AND J. W. BURGMJZIER, SIAM Rev. 15, 335 (1973). 
13. The NAG Mark 12 Manual (Numer. Algorithms Group, Oxford, 1987). 
12. M. ABRAMOWTZ AND I. E. STEGUN, Handbook of Mathematical Functions with Formuias, Graphs, 

and Mathematical Tables (U. S. Govt. Printing Offlce, Washington, DC, 1972). 
13. Ii. S. GRADSHTEYN AND I. M. RYZHIK, Table of Integrals, Series, and Products (Academic Press, 

Orlando, 1980). 
14. J. WIMP, Computation with Recurrence Relations (Pitman, Boston, 1984). 
15. S. L. DVORAK AND E. F. KUESTER, Scientific Report No. 89, Eiectromagnetics Laboratory, 

Department of Electrical Engineering, University of Colorado: Boulder, Colorado 80309, 1987 
(unpublished). 

16. N. NIELSEPI;, Handbuch der Theorie der Cylinderfunktionen (Druck Teubner. Leipzig, 1904). p. 261. 
17. A. ERDBLYI, Asymptotic Expansions (Dover, New York, 1956). 
18. M. V. CERRILLO, “The “Cliff” Method of Approximate Integration and the adiation from a Dipole 

over a Finite Conductive Ground,” in The McGill Symposium on Microwave 0ptics, 
tion and Scattering, Bedford, MA, Astia Document No. AD 211500, edited by 
Bedford, Mass., April 1959, p. 172. 

19. W. ~AUTSCHI, SIAM Rev. 9, 24 (1967). 
20. F. W. J. OLVER AND D. J. SOOKNE, Math. Comput. 26, 941 (1972). 
21. F. W. J. QLvEK, .I. Res. Nat. Bur. Stand. Sect. B II, 111 (1967). 

581,87:2-6 


